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The author discusses some methodological aspects of generalization and improvement of the accuracy of the 

method of canonical elements. Data of numerical experiments are compared to well-known exact analytical 

solutions of problems of heat transfer in regions with curvilinear boundaries. 

Numerical modeling of heat transfer in solids of complicated geometry with curvilinear boundaries 

necessitates use of nonuniform difference grids. The method of finite elements [1 ], usually adopted for solution of 

such problems, has some disadvantages. The algorithm for its implementation is rather complicated and consumes 

much machine time. Estimation of the error in the results of solution by the method of finite elements involves 

certain difficulties. Moreover, it is strictly justified only for stationary problems. 

In [2 ], a method of canonical elements for solids with curvilinear boundaries is described that is free of 

the above drawbacks. It consists in approximation of the transfer equation by the balance equation for a canonical 

element that is built on a nonuniform difference grid. Here, the derivatives along the coordinate axes are calculated 

as projections of the gradient of the sought function, which is determined by the values of this function at the nodes 

of the nonuniform grid. 

The simplest difference grid for solids with curvilinear boundaries is the quasi-uniform grid, which for a 

two-dimensional singly connected region is as follows: 

ym = Y' + mAy,  m = 0 ,  1 . . . . .  M ,  YM= 3f ; 

Xim = x m + i A x m ,  i=  0, 1 , . . . ,  I ,  Xl m = Xm ; (1) 

r n = n A v ,  n = 0 ,  1 . . . . .  A v > 0 ,  

where y' and y" are the minimum and maximum values of the y coordinate for points of the region under 

consideration; Xm and Xm are the minimum and maximum values of the x coordinate for points on the coordinate 

line Ym. On this grid, a canonical element (rectangle) is determined by the coordinate lines Ym+~ = 

(Ym + Ym+l)/2, Ym-1/2 = (Ym + Ym-1)/2,  Xi+l/2,m = (Xi+l,m + Xim)/2, xi-1/2,m = (Xim + Xi-l ,m)/2" 
The heat fluxes qx and qx through the element faces xi+l/2,m and  xi-1/2,m may be calculated by 

approximating the derivative of the sought temperature function t with respect to the x coordinate using central 

differences. 
The heat fluxes qy' and qy across the faces Ym+l/2 and Ym-1/2 are expressed by the derivatives of the function 

t with respect to the y coordinate, which are found as projections of the temperature gradient on this axis. The 

gradient is determined in terms of the derivatives of t with respect to x and some axis y' at the angle flyx to the x 

axis, by the formula [2 ] 

Ot _ 1 Ot ctanflyx O r .  (2) 
Oy sin flyx Oy' Ox 
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The heat flux q)' across the face Ym+l/2 may be calculated, in accordance with (2), by the difference equation 

t n n [ + tim ),m+l 
q'~. = - ;t 

Y Ym+ 1 Ym 

- Xi,m+l -- Xim + tj+l,l,m+l 9-1,m+10y 
X]+l,m+l -- X]-l ,m+l Ym+l -- Ym 

1"/ i2 

ti+l'm -- t i - l 'm  (1 -- Oy) + 
Xi+l, m -- Xi_l,  m 

, 0_<0y_< 1. 

(3) 

In [2 ], j is taken equal to i. Results of numerical experiments have shown that in order to improve the accuracy of 

the solution, it is expedient to choose j from the condition that the node (xj, Ym+l) be at the minimum distance 

from the coordinate line xi passing through the point (xi, Ym), i.e., from 

] r],m+l - -  rim [ = min [ rs,m+l - riml , s = O, 1 . . . . .  I .  (4) 

The heat flux @ across the face Ym-1/2 is calculated by relations analogous to (3), (4). 

In some cases, in using the method of canonical elements for regions of complicated configuration, it is 

necessary to determine the derivatives of the function t with respect to the x and y coordinates on the basis of its 

derivatives in the directions of some axes x' and y' that form the angles flxx and flyx with the x axis, respectively. 

Taking into consideration that the derivative of a scalar function in an arbitrary direction is equal to the projection 

of the gradient onto this direction, we write the following equations: 

Ot Ot 
Ox - cos ~0 grad t ,  Ox - sin ~p grad t ,  

Ot Ot 
= cos (~0 + flxx) grad t ,  

Ox' c?y' 
- cos (flyx - ~Y) grad t ,  

where ~p is the angle formed by the vector grad t and the x axis. Eliminating grad t and ~0 from this system, we 

obtain formulas for calculating Ot/Ox and Ot/Oy: 

Ot 

Ox 
1 Ot + 1 0 t _  ) / (ctan fixx + ctan flyx) (5) 

t 

sin flxx Ox sin flyx Oy 

Ot _ ( 1 at, + 1 at, / (tanl3xx + tan f lyx).  (6) 
Oy ~ cos flyx Oy cos flxx Ox 

At flxx = 0 formula (6) turns into (2), while (5) turns into the equality Ot/Ox = Ot/Ox. The mesh widths of the 

nonuniform difference grid may change within wide limits. Therefore, to improve the accuracy of a numerical 

solution it is useful to represent the three-layered explicit difference equation [3 ] in the following form: 

cp (1 +0ira ) tim - tim t i m -  tim qx - qx q 'Y-  ql 
AT - Oim - ~  - A x ~  + Ay ' Oirn >- O, (7) 

where the weight parameter 0 is chosen dependent on the coordinates of the grid nodes. After choosing the mesh 

widths of the grid AT, Ay, and AXm, the parameter Oim is determined in conformity with the stability conditions 
for the difference equation (7) by the relation 

Oim 
= [  0.5 - 1 at AT > A'Cirn, 

0 at Ar <_ A~im. 
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Here ATim is the maximum step with respect to time corresponding to the two-layered explicit difference equation 

into which Eq. (7) turns at Oim=O: 

f( )2( )) ATim c_~ Xi+l,m -- Xi - l ,m Ym+l -- Ym-1 -2  
= 2 2  2 + 2 " 

Without a marked change in the error in the solution, the step Ar may be chosen 5-7-fold greater than the minimum 

value of Arim. 

Of importance in implementation of the method of canonical elements is approximation of the boundary 

conditions for heat transfer occurring under boundary conditions of the second and third kind. Let the heat transfer 

conditions at the boundary node (I, m) be 

Ot 
A - ~ + B t +  C = O ,  (8) 

where v is the normal to the boundary surface. 

The derivative Ot/Ov may be determined in terms of the derivatives in the direction of the x coordinate and 

the direction of the tangent k to the boundary surface. Assuming x = v, x'  = x, y' = k, flyx = z /2 ,  and flxx = (v~x) 

in (3), we find 

Ot 1 Ot + t a n  ( v ,  x) Ot 
Ov - cos (v , x) Ox - ~ "  (9) 

In accordance with (9), Eq. (8) for the node (XI, rn, Ym) is approximated by the equation 

n+l _ tn+l 
1 tI,m l -X,m + tan (v, x) X 

A cos (v ,  x) xx,,~ - xI-~, ,~  

(tin, m+ 1 - tT, rn ) h~ + (ti% -- t ; _ l , m ) h  k 

hkh ~ (h k + h~) 

_ n+l 
+ Btlm + C = 0 ,  

where hk and h~ are the projections of the line segments connecting the point (XIm, Ym) with the points (Xz, m+l, 

Ym+l) and (Xl, m-j, Ym-1), respectively, on the tangent to the boundary surface at the point (xi, Ym). 

In the absence of an analytical expression for the boundary surface the direction of the normal v and 

tangent k at the point (Xlm, Ym) may be determined by the equation for the parabola passing through the points 

(Xlm, Ym), (Xl, m+l, Ym+l), and (Xl, m-1, Ym-1). For the quasi-uniform grid, 

ctan (k, x) = 
XI,m+ 1 -- Xl ,m- 1 

2Ay 
, tan (v, x) = - ctan (k, x).  

The method of canonical elements has been used to solve some problems of heat and mass transfer in 

bodies with curvilinear boundaries. To demonstrate the accuracy of the method, we present results of a comparison 

of numerical and welt-known exact analytical solutions for unbounded solid and hollow cylinders. The numerical 

solution of axisymmetric heat transfer problems is accomplished in Cartesian coordinates (x, y) for 1/4 of the 

cylinder cross section. The difference grid is the union of nodes of the quasi-uniform grid: 

i 

Ym = m a y ,  rn = 0 ,  1 . . . . .  M ,  Ay = R / M  ; Xim = x m + tax  m ,  

i =  0,  1, . . . ,  1 ,  A x  m = (x m -  X 'm) / ( [ - -  1), X m =RinVri - -  (Ym/Rin)  2 , 

x" m = R ~ / 1  - (Ym/R)  z ; T n =  nAz, n = 0 ,  1, . . . ,  AT=const  > 0  
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TABLE 1. Comparison of Numerical (t(x, y)) and Analytical (ta(r)) Solutions of the Heat Conduction Problem in 

Unbounded Solid and Hollow Cylinders for Different Kinds of Boundary Conditions (KBC) 

Fourier number 
t KBC 

0.05 0.1 0.2 0.4 0.6 0.8 1.0 

t(O, O) 

ta(O) 

t(O, R/2)  

t(R / 2, o) 

ta(R/2) 

t(O, O) 

ta(O) 

t(O, R) 

t(R, O) 

ta(R) 

t(O, O) 

ta(O) 

t(O, R) 

t(R, O) 

ta(R) 

t(0, R) 

t(R, 0) 

t,~(R) 

I 0.0139 

I ! 0.0183 

I 0.1636 

I 0.1645 

I 0.1644 
1 

II I 0.0009 

II 0.000 

II I 0.2787 

II 0.2705 

II 0.271 

III 0.0003 

III 0.00 

III 0.0217 

III 0.0222 

III 0.023 

I 0.5301 

I 0.5308 

I 0.525 

0.1508 

0.1516 

0.3871 

0.3866 

0.3897 

0.0243 

0.026 

0.4063 

0.4028 

0.415 

0.0215 

0.024 

0.304 

0.3058 

0.315 

Hollow 

0.5672 

0.5776 

0.562 

Solid cylinder 

0.4970 

0.4985 

0.6607 

0.6613 

0.6620 

0.1605 

0.168 

0.6282 

0.6235 

0.64 

0.1251 

0.132 

0.4187 

0.4160 

I 0.429 

cylinder, R = (Rin 

0.5676 

0.5811 

0.5688 

0.8409 0.9500 0.9842 

0.8415 0.9501 0.9843 

0.8934 0.9664 0.9895 

0.8936 0.9665 0.9895 

0.8938 0.9666 0.9895 

0.5387 0.9346 1.3315 

0.517 0.9391 1.3466 

1.0315 1.4287 1.8256 

1.0273 1.4247 1.8216 

1.0358 1.4392 1.8466 

0.2508 0.5253 0.6532 

0.35 0.53 0.66 

0.5779 0.6917 0.7747 

0.5762 0.6905 0.7738 

0.584 0.70 0.78 

+R) /2  

0.5676 0.5677 0.5678 

0.5811 0.5817 0.5818 

0.5688 0.5629 0.563 

0.9951 

0.9951 

0.9966 

0.9966 

0.9966 

1.7283 

1.7489 

2.2224 

2.2184 

2.236 

0.7466 

0.75 

0.8354 

0.8348 

0.84 

0.5679 

0.5818 

0.563 

(Rin and R are the radii of the inner and outer surface of the infinite hollow cylinder) and nodes that lie at the 

intersection of the arc of a circle cut off by the coordinate line (chord) YM-1 and the coordinate lines si, M_I, i = 

0, 1, ..., I -  1. 

Table 1 presents results of solution of the heat conduction problem for an unbounded cylinder that has the 

constant temperature t(0, r), 0 <_ r .<_ R at the initial moment of time under boundary conditions of the first kind 

t(T, R) = 1, of the second kind at the Kirpichev number Ki = 1, and of the third kind at the Biot number Bi = 1 as 

well as for a hollow cylinder with Rin  = 0.5 and boundary conditions of the first kind t(T, Rin)  = 0,  t ( z ,  R )  = 1. 

A comparison of results of numerical determination of the temperature function at characteristic points of 

the considered region of space at I = M = 17 with values of the temperature t a obtained for the same points of the 

region from exact analytical solutions [4 ] shows that the deviation of the solutions for the solid cylinder is, as a 

rule, within 1%, and for the hollow cylinder within 2 %. It may be inferred that the error in modeling heat transfer 

by the method of canonical elements on nonuniform grids is close to that on uniform grids. 
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